Some Divisibility Properties of the Euler Function

نویسندگان

  • WILLIAM D. BANKS
  • FLORIAN LUCA
  • IGOR E. SHPARLINSKI
  • I. E. SHPARLINSKI
چکیده

Let φ(·) denote the Euler function, and let a > 1 be a fixed integer. We study several divisibility conditions which exhibit typographical similarity with the standard formulation of the Euler theorem, such as an ≡ 1 (mod φ(n)), and we estimate the number of positive integers n ≤ x satisfying these conditions. 2000 Mathematics Subject Classification. 11A07, 11N37.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON MODALITY AND DIVISIBILITY OF POISSON AND BINOMIAL MIXTURES

Some structural aspects of mixtures, in general, have been previously investigated by the author in [I] and [2]. The aim of this article is to investigate some important structural properties of the special cases of Poisson and binomial mixtures in detail. Some necessary and sufficient conditions are arrived at for different modality and divisibility properties of a Poisson mixture based o...

متن کامل

Some finite groups with divisibility graph containing no triangles

Let $G$ be a finite group. The graph $D(G)$ is a divisibility graph of $G$. Its vertex set is the non-central conjugacy class sizes of $G$ and there is an edge between vertices $a$ and $b$ if and only if $a|b$ or $b|a$. In this paper, we investigate the structure of the divisibility graph $D(G)$ for a non-solvable group with $sigma^{ast}(G)=2$, a finite simple group $G$ that satisfies the one-p...

متن کامل

A Note on Infinite Divisibility of Zeta Distributions

Abstract The Riemann zeta distribution, defined as the one whose characteristic function is the normalised Riemann zeta function, is an interesting example of an infinitely divisible distribution. The infinite divisibility of the distribution has been proved with recourse to the Euler product of the Riemann zeta function. In this paper, we look at multiple zeta-star function, which is a multi-d...

متن کامل

Arithmetic Properties of Generalized Euler Numbers

The generalized Euler number En|k counts the number of permutations of {1, 2, . . . , n} which have a descent in position m if and only if m is divisible by k. The classical Euler numbers are the special case when k = 2. In this paper, we study divisibility properties of a q-analog of En|k. In particular, we generalize two theorems of Andrews and Gessel [3] about factors of the q-tangent numbers.

متن کامل

Thermal Buckling Analysis of Functionally Graded Euler-Bernoulli Beams with Temperature-dependent Properties

Thermal buckling behavior of functionally graded Euler-Bernoulli beams in thermal conditions is investigated analytically. The beam with material and thermal properties dependent on the temperature and position is considered. Based on the transformed-section method, the functionally graded beam is considered as an equivalent homogeneous Euler-Bernoulli beam with an effective bending rigidity un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005